The Polar Slice Sampler

نویسنده

  • Jeffrey S. Rosenthal
چکیده

This paper investigates the polar slice sampler, a particular type of the Markov chain Monte Carlo algorithm known as the slice sampler. This algorithm is shown to have convergence properties which under some circumstances are essentially independent of the dimension of the problem. For log-concave densities, the algorithm provably converges (from appropriate starting point) to within 0.01 of stationarity in total variation distance in a number of iterations given as a computable function of the spherical asymmetry of the density. In particular, for spherically symmetric log-concave densities, in arbitrary dimension, with appropriate starting point, we prove that the algorithm converges in at most 525 iterations. Simulations are done which confirm the polar slice sampler’s excellent performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Polar Slice

This paper investigates a particular type of slice sampler algorithm, the polar slice sampler. This algorithm is shown to have convergence properties which are essentially independent of the dimension of the problem, at least for log-concave densities. For such densities, the algorithm provably converges (from appropriate starting point) to within 0:01 of stationarity in total variation distanc...

متن کامل

Space Augmented and Double Slice Sampling

We present a generalisation of the standard well known and widely used Metropolis-Hastings algorithm which, unlike the Metropolis-Hastings sampler, can mix well over a target distribution which has separated and possibly narrow modes. The idea arose via a consideration of a space augmented slice sampler where the uniform space required to be sampled for the slice sampler, say I , is augmented w...

متن کامل

Inducing Synchronous Grammars with Slice Sampling

This paper describes an efficient sampler for synchronous grammar induction under a nonparametric Bayesian prior. Inspired by ideas from slice sampling, our sampler is able to draw samples from the posterior distributions of models for which the standard dynamic programing based sampler proves intractable on non-trivial corpora. We compare our sampler to a previously proposed Gibbs sampler and ...

متن کامل

On the use of auxiliary variables in Markov chain Monte Carlo sampling

We study the slice sampler, a method of constructing a reversible Markov chain with a speciied invariant distribution. Given an independence Metropolis-Hastings algorithm it is always possible to construct a slice sampler that dominates it in the Peskun sense. This means that the resulting Markov chain produces estimates with a smaller asymptotic variance. Furthermore the slice sampler has a sm...

متن کامل

Parallel multivariate slice sampling

Slice sampling provides an easily implemented method for constructing a Markov chain Monte Carlo (MCMC) algorithm. However, slice sampling has two major drawbacks: (i) it requires repeated evaluation of likelihoods for each update, which can make it impractical when evaluations are expensive or as the number of evaluations grows (geometrically) with the dimension of the slice sampler, and (ii) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999